linum-stm32h753bi

This page discusses issues unique to NuttX configurations for the LINUM-STM32H753BI board.

../../../../../_images/linum-stm32h753bi-top.jpg
../../../../../_images/linum-stm32h753bi-bottom.jpg

Board information

This board was release by Witte Tenology in 2023 and developed based on STM32H753BI microcontroller. The board has 2 expansion connectors used by the LCD display with touchscreen and another for access to other peripherals of microcontroller.

The board features:
  • 8 to 52V power supply

  • SWD Pins for use as STLink (Pin header) and TC2030-IDC 6-Pin Tag-Connect Plug-of-Nails™ Connector

  • Crystal for HS 25MHz

  • Crystal for RTC 32.768KHz

  • 1 UART serial for debug

  • 1 Led RGB

  • 1 Buzzer without internal oscillator

  • 1 Mono audio up to 3W

  • 1 Ethernet 10/100

  • 1 MicroSD connector supporting 1 or 4-bit bus

  • 1 USB 2.0 Host/Device

  • 1 EEPROM memory with 512K bits

  • 1 External SRAM memory with 8MB

  • 1 NOR memory with 16MB

  • 2 On-board RS232 Transceiver with RTS/CTS

  • 2 On-board RS485 Transceiver

  • 2 On-board CAN-FD Transceiver

Expansion connector 1 features:
  • 1 Display RBG 888

  • 1 Capacitive Touchscreen sensor

Expansion connector 2 features.
  • 1 SPI

  • 1 I2C

  • 1 One Wire

  • 2 DACs

  • 6 PWM Channels

  • 10 ADCs

Board documentation: https://wittetech.com/

LEDs

The LINUM-STM32H753BI has 3 software controllable LEDs.

LED RGB

PINS

LED_R

PG2

LED_G

PG3

LED_B

PB2

UART/USART

The LINUM-STM32H753BI used the USART1 for serial debug messages.

USART1

USART1

PINS

TX

PB14

RX

PB15

The LINUM-STM32H753BI board has two on-board RS-232 transceiver connected to USART2 and USART3.

USART2

PINS

TXD

PD5

RXD

PD6

CTS

PD3

RTS

PD4

USART3

PINS

TXD

PB10

RXD

PB11

CTS

PD11

RTS

PD12

The LINUM-STM32H753BI board has two on-board RS-485 transceiver connected to USART4 and USART6.

UART4

PINS

TXD

PB9

RXD

PB8

DE

PA15

USART6

PINS

TXD

PC6

RXD

PC7

DE

PG12

SDMMC

The LINUM-STM32H753BI has one SDCard slot connected as below:

SDMMC1

PINS

SDMMC_D0

PC8

SDMMC_D1

PC9

SDMMC_D2

PC10

SDMMC_D3

PC11

SDMMC_DK

PC12

GPIO

PINS

SDCARD_DETECTED

PG7

SDCARD_PWR_EN

PD7

ETHERNET

The LINUM-STM32H753BI has a ethernet connection using the transceiver KSZ8081RNACA.

ETH

PINS

ETH_REF_CLK

PA1

ETH_MDIO

PA2

ETH_CRS_DV

PA7

ETH_MDC

PC1

ETH_RXD0

PC4

ETH_RXD1

PC5

ETH_TX_EN

PG11

ETH_TXD0

PG13

ETH_TXD1

PG14

ETH_CLK

PA8

ETH_RESET

PI4

CAN-FD

The LINUM-STM32H753BI board has two on-board CAN-FD transceiver connected to FDCAN1 and FDCAN2.

FDCAN1

PINS

TXD

PH13

RXD

PH14

STD

PI2

FDCAN2

PINS

TXD

PB13

RXD

PB12

STD

PE3

USB

The LINUM-STM32H753BI has one usb port.

USB

PINS

USB_VBUS

PA9

USB_N

PA11

USB_P

PA12

USB_EN

PI12

USB_FLT

PI13

QUADSPI

The LINUM-STM32H753BI board has one NOR memory connected to QUADSPI. The NOR memory used is the W25Q128JV with 16MB

QUADSPI

PINS

IO0

PF8

IO1

PF9

IO2

PF7

IO3

PF6

CLK

PF10

NCS

PG6

I2C3

The LINUM-STM32H753BI connects the EEPROM memory and the touchscreen sensor to I2C3.

I2C3

PINS

SCL

PH7

SDA

PH8

EEPROM MEMORY

EEPROM memory used is the 24LC256 with 256Kb with the control bytes value 0x54.

TOUCHSCREEN SENSOR

The touchscreen sensor used is the GT928.

GPIO

PINS

TS_RESET

PI7

TS_ISR

PH9

I2C4

The I2C4 is available for general use on the expansion connector.

I2C4

PINS

SCL

PH11

SDA

PH12

External SDRAM

The LINUM-STM32H753BI has a external SDRAM with 16Mbits connected to FMC peripheral.

FMC

PINS

FMC_A0

PF0

FMC_A1

PF1

FMC_A2

PF2

FMC_A3

PF3

FMC_A4

PF4

FMC_A5

PF5

FMC_A6

PF12

FMC_A7

PF13

FMC_A8

PF14

FMC_A9

PF15

FMC_A10

PG0

FMC_A11

PG1

FMC_BA0

PG4

FMC_BA1

PG5

FMC_D0

PD14

FMC_D1

PD15

FMC_D2

PD0

FMC_D3

PD1

FMC_D4

PE7

FMC_D5

PE8

FMC_D6

PE9

FMC_D7

PE10

FMC_D8

PE11

FMC_D9

PE12

FMC_D10

PE13

FMC_D11

PE14

FMC_D12

PE15

FMC_D13

PD8

FMC_D14

PD9

FMC_D15

PD10

FMC_NBL0

PE0

FMC_NBL1

PE1

FMC_SDCKE0

PC3

FMC_SDCLK

PG8

FMC_SDNCAS

PG15

FMC_SDNEO

PC2

FMC_SDNRAS

PF11

FMC_SDNWE

PC0

LCD

The LINUM-STM32H753BI use the LTDC to support one LCD with RGB connection.

LTDC

PINS

LTDC_B0

PF0

LTDC_B1

PJ13

LTDC_B2

PJ14

LTDC_B3

PJ15

LTDC_B4

PK3

LTDC_B5

PK4

LTDC_B6

PK5

LTDC_B7

PK6

LTDC_CLK

PI14

LTDC_DE

PK7

LTDC_G0

PJ7

LTDC_G1

PJ8

LTDC_G2

PJ9

LTDC_G3

PJ10

LTDC_G4

PJ11

LTDC_G5

PK0

LTDC_G6

PK1

LTDC_G7

PK2

LTDC_HSYNC

PI10

LTDC_R0

PI15

LTDC_R1

PJ0

LTDC_R2

PJ1

LTDC_R3

PJ2

LTDC_R4

PJ3

LTDC_R5

PJ4

LTDC_R6

PJ5

LTDC_R7

PJ6

LTDC_VSYNC

PI9

PWM_BACKLIGHT

PH6

I2S

The LINUM-STM32H753BI has one I2S output.

I2S2

PINS

I2S2_WS

PI0

I2S2_CK

PI1

I2S2_SDO

PI3

PWM

The LINUM-STM32H753BI has a buzzer without internal oscillator connected to PB7

GPIO

PINS

BUZZER

PB7


Each linum-stm32h753bi configuration is maintained in a sub-directory and can be selected as follow:

  tools/configure.sh linum-stm32h753bi:<subdir>

Where <subdir> is one of the following:

Configuration Directories

nsh

Configures the NuttShell (nsh) located at apps/examples/nsh. This configuration enables a serial console on UART1.

usbnsh

Configures the NuttShell (nsh) located at apps/examples/nsh. This configuration enables a serial console over USB.

After flasing and reboot your board you should see in your dmesg logs:

$ sudo dmesg | tail
[ 9180.937813] usb 3-1.1.2: SerialNumber: 0
[ 9180.946974] cdc_acm 3-1.1.2:1.0: ttyACM0: USB ACM device
[ 9715.123387] usb 3-1.1.2: USB disconnect, device number 20
[ 9717.393142] usb 3-1.1.2: new full-speed USB device number 21 using xhci_hcd
[ 9717.494824] usb 3-1.1.2: New USB device found, idVendor=0525, idProduct=a4a7, bcdDevice= 1.01
[ 9717.494834] usb 3-1.1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3
[ 9717.494837] usb 3-1.1.2: Product: CDC/ACM Serial
[ 9717.494840] usb 3-1.1.2: Manufacturer: NuttX
[ 9717.494842] usb 3-1.1.2: SerialNumber: 0
[ 9717.504192] cdc_acm 3-1.1.2:1.0: ttyACM0: USB ACM device

You may need to press ENTER 3 times before the NSH show up.

modbus_slave

Configures the ModBus RTU Slave located at apps/examples/modbus. This configuration enables a RS485 on USART6.

After configuring the desired pins on menuconfig and wiring the RS485 converter, you can enable the ModBus to respond to queries:

nsh> modbus -e

In your pc you will be able to read the ModBus registers using an application like mbpoll:

$ mbpoll -a 10 -b 38400 -t 3 -r 1000 -c 4 /dev/ttyUSB1 -R

modbus_master

Configures the ModBus RTU Master located at apps/examples/modbusmaster. This configuration enables a RS485 on USART6.

After configuring the desired pins on menuconfig and wiring the RS485 converter, you can enable the ModBus Master to create queries for device with address 10:

nsh> mbmaster

In your pc you will be able to create a ModBus Slave with address 10 using an application like diagslave:

$ sudo diagslave -a 10 -b 38400 /dev/ttyUSB0

sdcard

Configures the NuttShell (nsh) and enables SD card support. The board has an onboard microSD slot that should be automatically registered as the block device /dev/mmcsd0 when an SD card is present.

The SD card can then be mounted by the NSH commands:

nsh> mount -t vfat /dev/mmcsd0 /mnt
nsh> mount
nsh> echo "Hello World!!" > /mnt/test_file.txt
nhs> ls /mnt/
test_file.txt
nsh> cat /mnt/test_file.txt
Hello World!!

eeprom

Use dd command to write and read data from EEPROM as below::

nsh> dd if=/dev/console of=/dev/eeprom bs=1 count=35
Witte-Tech Linum-STM32H753BI board
nsh> dd if=/dev/eeprom of=/dev/console bs=4 count=35
Witte-Tech Linum-STM32H753BI board
nsh>

buzzer

This example use the timer 4 with channel 2 to generate a PWM output signal on buzzer pin:

nsh> ls /dev
/dev:
console
null
pwm0
rtc0
ttyS0
nsh> pwm -d 75 -t 3
pwm_main: starting output with frequency: 100 duty: 0000bfff
pwm_main: stopping output
nsh> pwm -f 300 -t 3
pwm_main: starting output with frequency: 300 duty: 0000bfff
pwm_main: stopping output