ST Nucleo F722ZE
This page discusses issues unique to NuttX configurations for the STMicro Nucleo-144 board. See ST document STM32 Nucleo-144 boards (UM1974):
https://www.st.com/resource/en/user_manual/dm00244518.pdf
Board Features
Peripherals: 8 leds, 2 push button (3 LEDs, 1 button) under software control
Debug: STLINK/V2-1 debugger/programmer Uses a STM32F103CB to provide a ST-Link for programming, debug similar to the OpenOcd FTDI function - USB to JTAG front-end.
Expansion I/F: ST Zio and Extended Arduino and Morpho Headers
Hardware
GPIO - there are 144 I/O lines on the STM32F7xxZxT6 with various pins pined out on the Nucleo 144.
See https://developer.mbed.org/platforms/ST-Nucleo-F746ZG/ for slick graphic pinouts.
Keep in mind that:
The I/O is 3.3 Volt not 5 Volt like on the Arduino products.
The Nucleo-144 board family has 3 pages of Solder Bridges AKA Solder Blobs (SB) that can alter the factory configuration. We will note SB in effect but will assume the factory default settings.
Our main concern is establishing a console and LED utilization for debugging. Because so many pins can be multiplexed with so many functions, the above mentioned graphic may be helpful in identifying a serial port.
There are 5 choices that can be made from the menuconfig:
CONFIG_NUCLEO_CONSOLE_ARDUINO or CONFIG_NUCLEO_CONSOLE_MORPHO or
CONFIG_NUCLEO_CONSOLE_MORPHO_UART4 or CONFIG_NUCLEO_CONSOLE_VIRTUAL or
CONFIG_NUCLEO_CONSOLE_NONE
The CONFIG_NUCLEO_CONSOLE_NONE makes no preset for the console. You should still visit the U[S]ART selection and Device Drivers to disable any U[S]ART remaining.
The CONFIG_NUCLEO_CONSOLE_ARDUINO configurations assume that you are using a standard Arduino RS-232 shield with the serial interface with RX on pin D0 and TX on pin D1 from USART6:
-------- ---------------
STM32F7
ARDUIONO FUNCTION GPIO
-- ----- --------- -----
DO RX USART6_RX PG9
D1 TX USART6_TX PG14
-- ----- --------- -----
The CONFIG_NUCLEO_CONSOLE_MORPHO configurations uses Serial Port 8 (USART8) with TX on PE1 and RX on PE0.:
Serial
------
SERIAL_RX PE_0
SERIAL_TX PE_1
The CONFIG_NUCLEO_CONSOLE_MORPHO_UART4 configurations uses Serial Port 4 (UART4) with TX on PA1 and RX on PA0. Zero Ohm resistor / solder short at SB13 must be removed/open. (Disables Ethernet MII clocking.):
Serial
------
SERIAL_RX PA_1 CN11 30
SERIAL_TX PA_0 CN11 28
The CONFIG_NUCLEO_CONSOLE_VIRTUAL configurations uses Serial Port 3 (USART3) with TX on PD8 and RX on PD9.:
Serial
------
SERIAL_RX PD9
SERIAL_TX PD8
These signals are internally connected to the on board ST-Link.
Of course if your design has used those pins you can choose a completely different U[S]ART to use as the console. In that Case, you will need to edit the include/board.h to select different U[S]ART and / or pin selections.
LEDs
The Board provides a 3 user LEDs, LD1-LD3:
LED1 (Green) PB_0 (SB120 ON and SB119 OFF)
LED2 (Blue) PB_7 (SB139 ON)
LED3 (Red) PB_14 (SP118 ON)
When the I/O is HIGH value, the LEDs are on.
When the I/O is LOW, the LEDs are off.
These LEDs are not used by the board port unless CONFIG_ARCH_LEDS is defined. In that case, the usage by the board port is defined in include/board.h and src/stm32_autoleds.c. The LEDs are used to encode OS related events as follows when the LEDs are available:
SYMBOL
Meaning
RED
GREEN
BLUE
LED_STARTED
NuttX has been started
OFF
OFF
OFF
LED_HEAPALLOCATE
Heap has been allocated
OFF
OFF
ON
LED_IRQSENABLED
Interrupts enabled
OFF
ON
OFF
LED_STACKCREATED
Idle stack created
OFF
ON
ON
LED_INIRQ
In an interrupt
NC
NC
ON (momentary)
LED_SIGNAL
In a signal handler
NC
ON
OFF (momentary)
LED_ASSERTION
An assertion failed
ON
NC
ON (momentary)
LED_PANIC
The system has crashed
ON
OFF
OFF (flashing 2Hz)
LED_IDLE
MCU is is sleep mode
ON
OFF
OFF
- OFF - means that the OS is still initializing. Initialization is very fast
so if you see this at all, it probably means that the system is hanging up somewhere in the initialization phases.
GREEN - This means that the OS completed initialization.
- BLUE - Whenever and interrupt or signal handler is entered, the BLUE LED is
illuminated and extinguished when the interrupt or signal handler exits.
- VIOLET - If a recovered assertion occurs, the RED and blue LED will be
illuminated briefly while the assertion is handled. You will probably never see this.
- Flashing RED - In the event of a fatal crash, all other LEDs will be
extinguished and RED LED will FLASH at a 2Hz rate.
Thus if the GREEN LED is lit, NuttX has successfully booted and is, apparently, running normally. If the RED LED is flashing at approximately 2Hz, then a fatal error has been detected and the system has halted.
Serial Consoles
USART6 (CONFIG_NUCLEO_CONSOLE_ARDUINO)
ARDUINO
FUNCTION
GPIO
DO RX
USART6_RX
PG9
D1 TX
USART6_TX
PG14
You must use a 3.3 TTL to RS-232 converter or a USB to 3.3V TTL
Nucleo 144 FTDI TTL-232R-3V3
------------- -------------------
TXD - D1-TXD - RXD - Pin 5 (Yellow)
RXD - D0-RXD - TXD - Pin 4 (Orange)
GND GND - GND Pin 1 (Black)
------------- -------------------
*Note you will be reverse RX/TX
Use make menuconfig to configure USART6 as the console:
CONFIG_STM32F7_USART6=y
CONFIG_USARTs_SERIALDRIVER=y
CONFIG_USARTS_SERIAL_CONSOLE=y
CONFIG_USART6_RXBUFSIZE=256
CONFIG_USART6_TXBUFSIZE=256
CONFIG_USART6_BAUD=115200
CONFIG_USART6_BITS=8
CONFIG_USART6_PARITY=0
CONFIG_USART6_2STOP=0
USART8 (CONFIG_NUCLEO_CONSOLE_MORPHO)
Pins and Connectors:
FUNC GPIO Connector
Pin NAME
---- --- ------- ----
TXD: PE1 CN11-61, PE1
RXD: PE0 CN12-64, PE0
CN10-33, D34
---- --- ------- ----
You must use a 3.3 TTL to RS-232 converter or a USB to 3.3V TTL:
Nucleo 144 FTDI TTL-232R-3V3
------------- -------------------
TXD - CN11-61 - RXD - Pin 5 (Yellow)
RXD - CN12-64 - TXD - Pin 4 (Orange)
GND CN12-63 - GND Pin 1 (Black)
------------- -------------------
*Note you will be reverse RX/TX
Use make menuconfig to configure USART8 as the console:
CONFIG_STM32F7_UART8=y
CONFIG_UART8_SERIALDRIVER=y
CONFIG_UART8_SERIAL_CONSOLE=y
CONFIG_UART8_RXBUFSIZE=256
CONFIG_UART8_TXBUFSIZE=256
CONFIG_UART8_BAUD=115200
CONFIG_UART8_BITS=8
CONFIG_UART8_PARITY=0
CONFIG_UART8_2STOP=0
Virtual COM Port (CONFIG_NUCLEO_CONSOLE_VIRTUAL)
Yet another option is to use USART3 and the USB virtual COM port. This option may be more convenient for long term development, but is painful to use during board bring-up.
Solder Bridges. This configuration requires:
PD8 USART3 TX SB5 ON and SB7 OFF (Default)
PD9 USART3 RX SB6 ON and SB4 OFF (Default)
Configuring USART3 is the same as given above but add the S and #3.
Question: What BAUD should be configure to interface with the Virtual COM port? 115200 8N1?
Default:
As shipped, SB4 and SB7 are open and SB5 and SB6 closed, so the virtual COM port is enabled.
SPI
Since this board is so generic, having a quick way to set the SPI configuration seams in order. So the board provides a quick test that can be selected vi CONFIG_NUCLEO_SPI_TEST that will initialize the selected buses (SPI1-SPI3) and send some text on the bus at application initialization time board_app_initialize.
SDIO
To test the SD performance one can use a SparkFun microSD Sniffer from https://www.sparkfun.com/products/9419 or similar board and connect it as follows:
VCC V3.3 CN11 16
GND GND CN11-8
CMD PD2 CN11-4
CLK PC12 CN11-3
DAT0 - PC8 CN12-2
DAT1 - PC9 CN12-1
DAT2 PC10 CN11-1
CD PC11 CN11-2
Configurations
f7xx-nsh
Configures the NuttShell (nsh) located at apps/examples/nsh for the Nucleo-144 boards. The Configuration enables the serial interfaces on USART6. Support for builtin applications is enabled, but in the base configuration no builtin applications are selected (see NOTES below).
NOTES:
This configuration uses the mconf-based configuration tool. To change this configuration using that tool, you should:
Build and install the kconfig-mconf tool. See nuttx/README.txt see additional README.txt files in the NuttX tools repository.
If this is the initial configuration then execute:
./tools/configure.sh nucleo-144:nsh
in nuttx/ in order to start configuration process. Caution: Doing this step more than once will overwrite .config with the contents of the nucleo-144/nsh/defconfig file.
Execute ‘make oldconfig’ in nuttx/ in order to refresh the configuration.
Execute ‘make menuconfig’ in nuttx/ in order to start the reconfiguration process.
Save the .config file to reuse it in the future starting at step d.
By default, this configuration uses the ARM GNU toolchain for Linux. That can easily be reconfigured, of course.:
CONFIG_HOST_LINUX=y : Builds under Linux CONFIG_ARM_TOOLCHAIN_GNU_EABI=y : ARM GNU for Linux
- The serial console may be configured to use either USART3 (which would
correspond to the Virtual COM port) or with the console device configured for USART6 to support an Arduino serial shield (see instructions above under “Serial Consoles). You will need to check the defconfig file to see how the console is set up and, perhaps, modify the configuration accordingly.
To select the Virtual COM port:
-CONFIG_NUCLEO_CONSOLE_ARDUINO +CONFIG_NUCLEO_CONSOLE_VIRTUAL=y -CONFIG_USART6_SERIAL_CONSOLE=y +CONFIG_USART3_SERIAL_CONSOLE=y
To select the Arduino serial shield:
-CONFIG_NUCLEO_CONSOLE_VIRTUAL=y +CONFIG_NUCLEO_CONSOLE_ARDUINO -CONFIG_USART3_SERIAL_CONSOLE=y +CONFIG_USART6_SERIAL_CONSOLE=y
Default values for other settings associated with the select USART should be correct.
f7xx-evalos:
This configuration is designed to test the features of the board.
Configures the NuttShell (nsh) located at apps/examples/nsh for the Nucleo-144 boards. The console is available on serial interface USART3, which is accessible over the USB ST-Link interface.
Configures nsh with advanced features such as autocompletion.
Configures the on-board LEDs to work with the ‘leds’ example app.
Configures the 'helloxx' example app.
Adds character device for i2c1
Tries to register mpu60x0 IMU to i2c1
NOTES:
This configuration uses the mconf-based configuration tool. To change this configuration using that tool, you should:
Build and install the kconfig-mconf tool. See nuttx/README.txt see additional README.txt files in the NuttX tools repository.
If this is the initial configuration then execute:
./tools/configure.sh nucleo-144:evalos
in nuttx/ in order to start configuration process. Caution: Doing this step more than once will overwrite .config with the contents of the nucleo-144/evalos/defconfig file.
Execute ‘make oldconfig’ in nuttx/ in order to refresh the configuration.
Execute ‘make menuconfig’ in nuttx/ in order to start the reconfiguration process.
Save the .config file to reuse it in the future starting at step d.
By default, this configuration uses the ARM GNU toolchain for Linux. That can easily be reconfigured, of course.:
CONFIG_HOST_LINUX=y : Builds under Linux CONFIG_ARM_TOOLCHAIN_GNU_EABI=y : ARM GNU for Linux