================= linum-stm32h753bi ================= This page discusses issues unique to NuttX configurations for the LINUM-STM32H753BI board. .. figure:: linum-stm32h753bi-top.jpg :align: center .. figure:: linum-stm32h753bi-bottom.jpg :align: center Board information ================= This board was release by Witte Tenology in 2023 and developed based on STM32H753BI microcontroller. The board has 2 expansion connectors used by the LCD display with touchscreen and another for access to other peripherals of microcontroller. The board features: - 8 to 52V power supply - SWD Pins for use as STLink (Pin header) and TC2030-IDC 6-Pin Tag-Connect Plug-of-Nails™ Connector - Crystal for HS 25MHz - Crystal for RTC 32.768KHz - 1 UART serial for debug - 1 Led RGB - 1 Buzzer without internal oscillator - 1 Mono audio up to 3W - 1 Ethernet 10/100 - 1 MicroSD connector supporting 1 or 4-bit bus - 1 USB 2.0 Host/Device - 1 EEPROM memory with 512K bits - 1 External SRAM memory with 8MB - 1 NOR memory with 16MB - 2 On-board RS232 Transceiver with RTS/CTS - 2 On-board RS485 Transceiver - 2 On-board CAN-FD Transceiver Expansion connector 1 features: - 1 Display RBG 888 - 1 Capacitive Touchscreen sensor Expansion connector 2 features. - 1 SPI - 1 I2C - 1 One Wire - 2 DACs - 6 PWM Channels - 10 ADCs Board documentation: https://wittetech.com/ BOARD-LEDs ========== The LINUM-STM32H753BI has 3 software controllable LEDs. ======= ===== LED RGB PINS ======= ===== LED_R PG2 LED_G PG3 LED_B PB2 ======= ===== UART/USART ========== The LINUM-STM32H753BI used the USART1 for serial debug messages. USART1 ------ ====== ===== USART1 PINS ====== ===== TX PB14 RX PB15 ====== ===== The LINUM-STM32H753BI board has two on-board RS-232 transceiver connected to USART2 and USART3. ====== ===== USART2 PINS ====== ===== TXD PD5 RXD PD6 CTS PD3 RTS PD4 ====== ===== ====== ===== USART3 PINS ====== ===== TXD PB10 RXD PB11 CTS PD11 RTS PD12 ====== ===== The LINUM-STM32H753BI board has two on-board RS-485 transceiver connected to USART4 and USART6. ====== ===== UART4 PINS ====== ===== TXD PB9 RXD PB8 DE PA15 ====== ===== ====== ===== USART6 PINS ====== ===== TXD PC6 RXD PC7 DE PG12 ====== ===== SDMMC ====== The LINUM-STM32H753BI has one SDCard slot connected as below: ========== ===== SDMMC1 PINS ========== ===== SDMMC_D0 PC8 SDMMC_D1 PC9 SDMMC_D2 PC10 SDMMC_D3 PC11 SDMMC_DK PC12 ========== ===== =============== ===== GPIO PINS =============== ===== SDCARD_DETECTED PG7 SDCARD_PWR_EN PD7 =============== ===== ETHERNET ======== The LINUM-STM32H753BI has a ethernet connection using the transceiver KSZ8081RNACA. ============ ===== ETH PINS ============ ===== ETH_REF_CLK PA1 ETH_MDIO PA2 ETH_CRS_DV PA7 ETH_MDC PC1 ETH_RXD0 PC4 ETH_RXD1 PC5 ETH_TX_EN PG11 ETH_TXD0 PG13 ETH_TXD1 PG14 ETH_CLK PA8 ETH_RESET PI4 ============ ===== CAN-FD ======== The LINUM-STM32H753BI board has two on-board CAN-FD transceiver connected to FDCAN1 and FDCAN2. ====== ===== FDCAN1 PINS ====== ===== TXD PH13 RXD PH14 STD PI2 ====== ===== ====== ===== FDCAN2 PINS ====== ===== TXD PB13 RXD PB12 STD PE3 ====== ===== USB ============ The LINUM-STM32H753BI has one usb port. ========= ===== USB PINS ========= ===== USB_VBUS PA9 USB_N PA11 USB_P PA12 USB_EN PI12 USB_FLT PI13 ========= ===== QUADSPI ============== The LINUM-STM32H753BI board has one NOR memory connected to QUADSPI. The NOR memory used is the W25Q128JV with 16MB ======= ===== QUADSPI PINS ======= ===== IO0 PF8 IO1 PF9 IO2 PF7 IO3 PF6 CLK PF10 NCS PG6 ======= ===== I2C3 ============ The LINUM-STM32H753BI connects the EEPROM memory and the touchscreen sensor to I2C3. ====== ===== I2C3 PINS ====== ===== SCL PH7 SDA PH8 ====== ===== EEPROM MEMORY -------------- EEPROM memory used is the 24LC256 with 256Kb with the control bytes value 0x54. TOUCHSCREEN SENSOR ------------------ The touchscreen sensor used is the GT928. ======== ===== GPIO PINS ======== ===== TS_RESET PI7 TS_ISR PH9 ======== ===== I2C4 ======= The I2C4 is available for general use on the expansion connector. ====== ===== I2C4 PINS ====== ===== SCL PH11 SDA PH12 ====== ===== External SDRAM ============== The LINUM-STM32H753BI has a external SDRAM with 16Mbits connected to FMC peripheral. =========== ===== FMC PINS =========== ===== FMC_A0 PF0 FMC_A1 PF1 FMC_A2 PF2 FMC_A3 PF3 FMC_A4 PF4 FMC_A5 PF5 FMC_A6 PF12 FMC_A7 PF13 FMC_A8 PF14 FMC_A9 PF15 FMC_A10 PG0 FMC_A11 PG1 FMC_BA0 PG4 FMC_BA1 PG5 FMC_D0 PD14 FMC_D1 PD15 FMC_D2 PD0 FMC_D3 PD1 FMC_D4 PE7 FMC_D5 PE8 FMC_D6 PE9 FMC_D7 PE10 FMC_D8 PE11 FMC_D9 PE12 FMC_D10 PE13 FMC_D11 PE14 FMC_D12 PE15 FMC_D13 PD8 FMC_D14 PD9 FMC_D15 PD10 FMC_NBL0 PE0 FMC_NBL1 PE1 FMC_SDCKE0 PC3 FMC_SDCLK PG8 FMC_SDNCAS PG15 FMC_SDNEO PC2 FMC_SDNRAS PF11 FMC_SDNWE PC0 =========== ===== LCD ======= The LINUM-STM32H753BI use the LTDC to support one LCD with RGB connection. ============= ===== LTDC PINS ============= ===== LTDC_B0 PF0 LTDC_B1 PJ13 LTDC_B2 PJ14 LTDC_B3 PJ15 LTDC_B4 PK3 LTDC_B5 PK4 LTDC_B6 PK5 LTDC_B7 PK6 LTDC_CLK PI14 LTDC_DE PK7 LTDC_G0 PJ7 LTDC_G1 PJ8 LTDC_G2 PJ9 LTDC_G3 PJ10 LTDC_G4 PJ11 LTDC_G5 PK0 LTDC_G6 PK1 LTDC_G7 PK2 LTDC_HSYNC PI10 LTDC_R0 PI15 LTDC_R1 PJ0 LTDC_R2 PJ1 LTDC_R3 PJ2 LTDC_R4 PJ3 LTDC_R5 PJ4 LTDC_R6 PJ5 LTDC_R7 PJ6 LTDC_VSYNC PI9 PWM_BACKLIGHT PH6 ============= ===== I2S ======= The LINUM-STM32H753BI has one I2S output. ======== ===== I2S2 PINS ======== ===== I2S2_WS PI0 I2S2_CK PI1 I2S2_SDO PI3 ======== ===== PWM ======= The LINUM-STM32H753BI has a buzzer without internal oscillator connected to PB7 ========= ===== GPIO PINS ========= ===== BUZZER PB7 ========= ===== ============== Each linum-stm32h753bi configuration is maintained in a sub-directory and can be selected as follow:: tools/configure.sh linum-stm32h753bi: Where is one of the following: Configuration Directories ------------------------- nsh --- Configures the NuttShell (nsh) located at apps/examples/nsh. This configuration enables a serial console on UART1. usbnsh ------ Configures the NuttShell (nsh) located at apps/examples/nsh. This configuration enables a serial console over USB. After flasing and reboot your board you should see in your dmesg logs:: $ sudo dmesg | tail [ 9180.937813] usb 3-1.1.2: SerialNumber: 0 [ 9180.946974] cdc_acm 3-1.1.2:1.0: ttyACM0: USB ACM device [ 9715.123387] usb 3-1.1.2: USB disconnect, device number 20 [ 9717.393142] usb 3-1.1.2: new full-speed USB device number 21 using xhci_hcd [ 9717.494824] usb 3-1.1.2: New USB device found, idVendor=0525, idProduct=a4a7, bcdDevice= 1.01 [ 9717.494834] usb 3-1.1.2: New USB device strings: Mfr=1, Product=2, SerialNumber=3 [ 9717.494837] usb 3-1.1.2: Product: CDC/ACM Serial [ 9717.494840] usb 3-1.1.2: Manufacturer: NuttX [ 9717.494842] usb 3-1.1.2: SerialNumber: 0 [ 9717.504192] cdc_acm 3-1.1.2:1.0: ttyACM0: USB ACM device You may need to press ENTER 3 times before the NSH show up. modbus_slave ------------ Configures the ModBus RTU Slave located at apps/examples/modbus. This configuration enables a RS485 on USART6. After configuring the desired pins on menuconfig and wiring the RS485 converter, you can enable the ModBus to respond to queries:: nsh> modbus -e In your pc you will be able to read the ModBus registers using an application like ``mbpoll``:: $ mbpoll -a 10 -b 38400 -t 3 -r 1000 -c 4 /dev/ttyUSB1 -R modbus_master ------------- Configures the ModBus RTU Master located at apps/examples/modbusmaster. This configuration enables a RS485 on USART6. After configuring the desired pins on menuconfig and wiring the RS485 converter, you can enable the ModBus Master to create queries for device with address 10:: nsh> mbmaster In your pc you will be able to create a ModBus Slave with address 10 using an application like ``diagslave``:: $ sudo diagslave -a 10 -b 38400 /dev/ttyUSB0 sdcard ------ Configures the NuttShell (nsh) and enables SD card support. The board has an onboard microSD slot that should be automatically registered as the block device /dev/mmcsd0 when an SD card is present. The SD card can then be mounted by the NSH commands:: nsh> mount -t vfat /dev/mmcsd0 /mnt nsh> mount nsh> echo "Hello World!!" > /mnt/test_file.txt nhs> ls /mnt/ test_file.txt nsh> cat /mnt/test_file.txt Hello World!! eeprom ------ Use **dd** command to write and read data from EEPROM as below::: nsh> dd if=/dev/console of=/dev/eeprom bs=1 count=35 Witte-Tech Linum-STM32H753BI board nsh> dd if=/dev/eeprom of=/dev/console bs=4 count=35 Witte-Tech Linum-STM32H753BI board nsh> buzzer ------ This example use the timer 4 with channel 2 to generate a PWM output signal on buzzer pin:: nsh> ls /dev /dev: console null pwm0 rtc0 ttyS0 nsh> pwm -d 75 -t 3 pwm_main: starting output with frequency: 100 duty: 0000bfff pwm_main: stopping output nsh> pwm -f 300 -t 3 pwm_main: starting output with frequency: 300 duty: 0000bfff pwm_main: stopping output leds ------ Example to blink the RBG led of board, using this example the board led status support stop to work:: # turn on led red printf \x00000001 > /dev/userleds # turn on led green printf \x00000002 > /dev/userleds # turn on led blue printf \x00000004 > /dev/userleds # Run blink leds sample nsh> leds leds_main: Starting the led_daemon leds_main: led_daemon started led_daemon (pid# 3): Running led_daemon: Opening /dev/userleds led_daemon: Supported LEDs 0x07 led_daemon: LED set 0x01 nsh> led_daemon: LED set 0x02 led_daemon: LED set 0x03 led_daemon: LED set 0x04 led_daemon: LED set 0x05 led_daemon: LED set 0x06 led_daemon: LED set 0x07 led_daemon: LED set 0x06 led_daemon: LED set 0x05 led_daemon: LED set 0x04 led_daemon: LED set 0x03 led_daemon: LED set 0x02 led_daemon: LED set 0x01 zmodem ------ This example use the nsh via usb and the SDCard to storage the files exchanged. By default the zmodem lib use the path /tmp to storage the files. Sending files to target:: # Mount the SDCard at /tmp nsh> mount -t vfat /dev/mmcsd0 /tmp # Waiting for a new file. nsh> rz # Transmitting a file to target. my_pc$ sz --zmodem nuttx_logo.txt > /dev/ttyACM0 < /dev/ttyACM0 # Check if the file was received nsh> ls -l /tmp /tmp: -rw-rw-rw- 1942 nuttx_logo.txt Transmiting a file to PC:: # Sending the file nuttx_logo.txt to PC nsh> sz -x 1 /tmp/nuttx_logo.txt **B00000000000000 # Using zmodem to receive a file from target my_pc/temp$ rz > /dev/ttyACM0 < /dev/ttyACM0 Receiving: nuttx_logo.txt Bytes received: 1942/ 1942 BPS:124544 Transfer complete my_pc/temp$ ls -l -rw------- 1 nuttx nuttx 1942 abr 6 16:07 nuttx_logo.txt If you don't have a SDCard on your board, you can mount the TMPFS at /tmp and transfer files to it, but you cannot transfer big files because TMPFS could use the free RAM of your board:: nsh> mount -t tmpfs /tmp nxffs ----- This example use the flash memory W25Q128JV via qspi with the nxffs file system:: NuttShell (NSH) NuttX-12.5.1-RC0 nsh> ls /: dev/ w25/ nsh> cd /w25 nsh> echo "hello world!" > message.txt nsh> ls /w25: message.txt nsh> cat message.txt hello world! littlefs -------- This example use the flash memory W25Q128JV via qspi with the littlefs file system:: NuttShell (NSH) NuttX-12.5.1-RC0 nsh> ls /: dev/ w25/ nsh> cd /w25 nsh> mkdir folder1 nsh> cd folder1 nsh> echo "hello world!!!!" > message.txt nsh> cat message.txt hello world!!!! nsh> ls /w25/folder1: . .. message.txt rndis ----- This example use ethernet over usb and show how configure ip and download file with wget command from server. After flash the board check if the linux found and recognized the new network driver:: $ sudo dmesg | tail [30260.873245] rndis_host 3-1.3:1.0 enxa0e0deadbeef: unregister 'rndis_host' usb-0000:00:14.0-1.3, RNDIS device [30265.461419] usb 3-1.3: new full-speed USB device number 34 using xhci_hcd [30265.563354] usb 3-1.3: New USB device found, idVendor=584e, idProduct=5342, bcdDevice= 0.01 [30265.563359] usb 3-1.3: New USB device strings: Mfr=1, Product=2, SerialNumber=3 [30265.563361] usb 3-1.3: Product: RNDIS gadget [30265.563362] usb 3-1.3: Manufacturer: NuttX [30265.563363] usb 3-1.3: SerialNumber: 1234 [30265.572179] rndis_host 3-1.3:1.0: dev can't take 1558 byte packets (max 660), adjusting MTU to 602 [30265.573517] rndis_host 3-1.3:1.0 eth0: register 'rndis_host' at usb-0000:00:14.0-1.3, RNDIS device, a0:e0:de:ad:be:ef [30265.584924] rndis_host 3-1.3:1.0 enxa0e0deadbeef: renamed from eth0 $ ifconfig enxa0e0deadbeef: flags=4163 mtu 602 inet 10.42.0.1 netmask 255.255.255.0 broadcast 10.42.0.255 ether a0:e0:de:ad:be:ef txqueuelen 1000 (Ethernet) RX packets 87 bytes 10569 (10.5 KB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 99 bytes 22896 (22.8 KB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0 **OBS:** In network settings of PC enable "Shared to other computers" Configure the IP of target:: nsh> ifconfig eth0 10.42.0.2 nsh> ifconfig lo Link encap:Local Loopback at RUNNING mtu 1518 inet addr:127.0.0.1 DRaddr:127.0.0.1 Mask:255.0.0.0 eth0 Link encap:Ethernet HWaddr 00:e0:de:ad:be:ef at UP mtu 576 inet addr:10.42.0.2 DRaddr:10.42.0.1 Mask:255.255.255.0 IPv4 TCP UDP ICMP Received 012a 0000 0126 0000 Dropped 0004 0000 0000 0000 IPv4 VHL: 0000 Frg: 0001 Checksum 0000 0000 0000 ---- TCP ACK: 0000 SYN: 0000 RST: 0000 0000 Type 0000 ---- ---- 0000 Sent 0000 0000 0000 0000 Rexmit ---- 0000 ---- ---- nsh> Testing communication with PC using ping command:: nsh> ping 10.42.0.1 PING 10.42.0.1 56 bytes of data 56 bytes from 10.42.0.1: icmp_seq=0 time=0.0 ms 56 bytes from 10.42.0.1: icmp_seq=1 time=0.0 ms 56 bytes from 10.42.0.1: icmp_seq=2 time=0.0 ms 56 bytes from 10.42.0.1: icmp_seq=3 time=0.0 ms 56 bytes from 10.42.0.1: icmp_seq=4 time=0.0 ms 56 bytes from 10.42.0.1: icmp_seq=5 time=0.0 ms 56 bytes from 10.42.0.1: icmp_seq=6 time=0.0 ms 56 bytes from 10.42.0.1: icmp_seq=7 time=0.0 ms 56 bytes from 10.42.0.1: icmp_seq=8 time=0.0 ms 56 bytes from 10.42.0.1: icmp_seq=9 time=0.0 ms 10 packets transmitted, 10 received, 0% packet loss, time 10100 ms rtt min/avg/max/mdev = 0.000/0.000/0.000/0.000 ms In your pc you will be able connect to target using telnet and access their shell nsh:: $ telnet 10.42.0.2 Trying 10.42.0.2... Connected to 10.42.0.2. Escape character is '^]'. NuttShell (NSH) NuttX-12.5.1 nsh> uname -a NuttX 12.5.1 c148e8f2af-dirty Apr 28 2024 10:27:50 arm linum-stm32h753bi nsh> exit Connection closed by foreign host. $ Testing wget to download file from server:: # PC: Creating a http server and sharing local folder. $ sudo python3 -m http.server 80 -d ./ # log of server Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ... 10.42.0.2 - - [28/Apr/2024 16:14:39] "GET /nuttx_logo.txt HTTP/1.0" 200 - # Using wget on target nsh> mount -t tmpfs /tmp nsh> cd /tmp nsh> pwd /tmp nsh> wget http://10.42.0.1/nuttx_logo.txt nsh> ls /tmp: nuttx_logo.txt usbmsc-sdcard ------------- This example uses the USB Mass Storage with SD Card. Enable the USB Mass Storage with the command **msconn**:: nsh> msconn mcsonn_main: Creating block drivers mcsonn_main: handle=0x38003020 mcsonn_main: Bind LUN=0 to /dev/mmcsd0 mcsonn_main: Connected After that check if your PC recognized the usb driver:: $ sudo dmesg | tail [sudo] password for jaga: [27219.361934] usbcore: registered new interface driver uas [27220.378231] scsi 0:0:0:0: Direct-Access NuttX Mass Storage 0101 PQ: 0 ANSI: 2 [27220.378646] sd 0:0:0:0: Attached scsi generic sg0 type 0 [27220.379203] sd 0:0:0:0: [sda] 1930240 512-byte logical blocks: (988 MB/943 MiB) [27220.597414] sd 0:0:0:0: [sda] Write Protect is off [27220.597419] sd 0:0:0:0: [sda] Mode Sense: 0f 00 00 00 [27220.817620] sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA [27221.265245] sda: sda1 [27221.266103] sd 0:0:0:0: [sda] Attached SCSI removable disk [27228.147377] FAT-fs (sda1): Volume was not properly unmounted. Some data may be corrupt. Please run fsck. **OBS:** This example disable the macro CONFIG_STM32H7_SDMMC_IDMA, for more information read the file: arch/arm/stm32h7/stm32_sdmmc.c