rv-virt
RISC-V Toolchain
Any generic RISC-V toolchain can be used. It’s recommended to use the same toolchain used by NuttX CI.
Please refer to the Docker container and check for the current compiler version being used. For instance:
###############################################################################
# Build image for tool required by RISCV builds
###############################################################################
FROM nuttx-toolchain-base AS nuttx-toolchain-riscv
# Download the latest RISCV GCC toolchain prebuilt by xPack
RUN mkdir riscv-none-elf-gcc && \
curl -s -L "https://github.com/xpack-dev-tools/riscv-none-elf-gcc-xpack/releases/download/v13.2.0-2/xpack-riscv-none-elf-gcc-13.2.0-2-linux-x64.tar.gz" \
| tar -C riscv-none-elf-gcc --strip-components 1 -xz
It uses the xPack’s prebuilt toolchain based on GCC 13.2.0-2.
RISC-V QEMU
Build and install qemu
:
$ git clone https://github.com/qemu/qemu
$ cd qemu
$ ./configure --target-list=riscv32-softmmu,riscv64-softmmu
$ make
$ sudo make install
QEMU 7.2.9 or later and OpenSBI v1.1 or later (usually shipped with QEMU) is required, to support RISC-V “Sstc” Extension. It is also recommended to use the latest QEMU and OpenSBI.
For users who wish to use their own OpenSBI, please refer to OpenSBI repository.
Configurations
All of the configurations presented below can be tested by running the following commands:
$ ./tools/configure.sh rv-virt:<config_name>
Where <config_name> is the name of the configuration you want to use, i.e.: nsh, knsh32, knsh64…
To build it, run the following command:
$ make -j$(nproc)
or, with more verbosity:
$ make V=1 -j$(nproc)
Warning
Some configurations require additional steps to be built. Please refer to the specific configurations to check it out
Finally, to run it, use the following command:
For 32-bit configurations:
$ qemu-system-riscv32 -semihosting -M virt,aclint=on -cpu rv32 -smp <cpu number> -bios none -kernel nuttx -nographic
And, for 64-bit configurations:
$ qemu-system-riscv64 -semihosting -M virt,aclint=on -cpu rv64 -smp <cpu number> -bios none -kernel nuttx -nographic
-smp
option can be only used in smp build, and the cpu number
needs
to be set to the same value as CONFIG_SMP_NCPUS
in the build config file.
If testing with S-mode build, remove the -bios none
option. S-mode build
requires SBI to function properly.
citest
This configuration is the default configuration intended to be used by the automated testing on CI of 32-bit RISC-V using QEMU.
To run it with QEMU, use the following command:
$ qemu-system-riscv32 -semihosting -M virt -cpu rv32 \
-drive index=0,id=userdata,if=none,format=raw,file=./fatfs.img \
-device virtio-blk-device,bus=virtio-mmio-bus.0,drive=userdata \
-bios none -kernel nuttx -nographic
To run the CI scripts, use the following command:
$ ./nuttx/boards/risc-v/qemu-rv/rv-virt/configs/citest/run
citest64
Identical to the citest configuration, but for 64-bit RISC-V.
fb
Uses the VirtIO GPU driver to run the fb demo application on 32-bit RISC-V.
To run it with QEMU, use the following command:
$ qemu-system-riscv32 -semihosting -M virt -cpu rv32 -smp 8 \
-chardev stdio,id=con,mux=on \
-serial chardev:con \
-device virtio-gpu-device,xres=640,yres=480,bus=virtio-mmio-bus.0 \
-mon chardev=con,mode=readline \
-bios none -kernel nuttx
fb64
Identical to the fb configuration, but for 64-bit RISC-V.
To run it with QEMU, use the following command:
$ qemu-system-riscv64 -semihosting -M virt -cpu rv64 -smp 8 \
-chardev stdio,id=con,mux=on \
-serial chardev:con \
-device virtio-gpu-device,xres=640,yres=480,bus=virtio-mmio-bus.0 \
-mon chardev=con,mode=readline \
-bios none -kernel nuttx
knetnsh64
Similar to the knsh32 configuration, but with networking support and 64-bit RISC-V.
To run it with QEMU, use the following command:
$ dd if=/dev/zero of=./mydisk-1gb.img bs=1M count=1024
$ qemu-system-riscv64 -semihosting -M virt,aclint=on -cpu rv64 -smp 8 \
-global virtio-mmio.force-legacy=false \
-device virtio-serial-device,bus=virtio-mmio-bus.0 \
-chardev socket,telnet=on,host=127.0.0.1,port=3450,server=on,wait=off,id=foo \
-device virtconsole,chardev=foo \
-device virtio-rng-device,bus=virtio-mmio-bus.1 \
-netdev user,id=u1,hostfwd=tcp:127.0.0.1:10023-10.0.2.15:23,hostfwd=tcp:127.0.0.1:15001-10.0.2.15:5001 \
-device virtio-net-device,netdev=u1,bus=virtio-mmio-bus.2 \
-drive file=./mydisk-1gb.img,if=none,format=raw,id=hd \
-device virtio-blk-device,bus=virtio-mmio-bus.3,drive=hd \
-kernel ./nuttx/nuttx -nographic
knetnsh64_smp
Similar to the knetnsh64 configuration, but with SMP support for 64-bit RISC-V.
knsh32
This is similar to the nsh configuration except that NuttX is built as a kernel-mode, monolithic module, and the user applications are built separately. It uses hostfs and QEMU in semi-hosting mode to load the user-space applications. This is intended to 32-bit RISC-V.
To build it, use the following command:
$ make V=1 -j$(nproc)
$ make export V=1 -j$(nproc)
$ pushd ../apps
$ ./tools/mkimport.sh -z -x ../nuttx/nuttx-export-*.tar.gz
$ make import V=1 -j$(nproc)
$ popd
Run it with QEMU using the default command for 32-bit RISC-V.
In nsh, applications can be run from the /system/bin directory:
nsh> /system/bin/hello
knsh32_paging
Similar to knsh32_romfs
, but enabling on-demand paging: this
configuration simulates a 4MiB device (using QEMU), but sets the number of
heap pages equal to CONFIG_ARCH_HEAP_NPAGES=2048
. This means that each
process’s heap is 8MiB, whereas CONFIG_POSIX_SPAWN_DEFAULT_STACKSIZE
is
1048576
(1MiB) represents the stack size of the processes (which is
allocated from the process’s heap). This configuration is used for 32-bit
RISC-V which implements the Sv32 MMU specification and enables processes
to have their own address space larger than the available physical memory.
This is particularly useful for implementing a set of programming language
interpreters.
knsh32_romfs
Similar to the knsh32 configuration, but uses ROMFS instead of hostfs.
A ROMFS image is generated and linked to the kernel. This requires re-running make
:
$ make V=1 -j$(nproc)
$ make export V=1 -j$(nproc)
$ pushd ../apps
$ ./tools/mkimport.sh -z -x ../nuttx/nuttx-export-*.tar.gz
$ make import V=1 -j$(nproc)
$ ./tools/mkromfsimg.sh ../nuttx/arch/risc-v/src/board/romfs_boot.c
$ popd
$ make V=1 -j$(nproc)
To run it, use the following command:
$ qemu-system-riscv32 -M virt,aclint=on -cpu rv32 -kernel nuttx -nographic
In nsh, applications can be run from the /system/bin directory:
nsh> /system/bin/hello
knsh64
Similar to the knsh32 configuration, but for 64-bit RISC-V.
Run it with QEMU using the default command for 64-bit RISC-V.
In nsh, applications can be run from the /system/bin directory:
nsh> /system/bin/hello
ksmp64
Identical to the knsh64 configuration but with SMP support.
netnsh
Similar to the nsh configuration, but with networking support for 32-bit RISC-V.
To run it with QEMU, use the following command:
$ dd if=/dev/zero of=./mydisk-1gb.img bs=1M count=1024
$ qemu-system-riscv32 -semihosting -M virt,aclint=on -cpu rv32 -smp 8 \
-global virtio-mmio.force-legacy=false \
-device virtio-serial-device,bus=virtio-mmio-bus.0 \
-chardev socket,telnet=on,host=127.0.0.1,port=3450,server=on,wait=off,id=foo \
-device virtconsole,chardev=foo \
-device virtio-rng-device,bus=virtio-mmio-bus.1 \
-netdev user,id=u1,hostfwd=tcp:127.0.0.1:10023-10.0.2.15:23,hostfwd=tcp:127.0.0.1:15001-10.0.2.15:5001 \
-device virtio-net-device,netdev=u1,bus=virtio-mmio-bus.2 \
-drive file=./mydisk-1gb.img,if=none,format=raw,id=hd \
-device virtio-blk-device,bus=virtio-mmio-bus.3,drive=hd \
-bios none -kernel ./nuttx/nuttx -nographic
netnsh64
Similar to the netnsh configuration, but for 64-bit RISC-V.
To run it with QEMU, use the following command:
$ dd if=/dev/zero of=./mydisk-1gb.img bs=1M count=1024
$ qemu-system-riscv64 -semihosting -M virt,aclint=on -cpu rv64 -smp 8 \
-global virtio-mmio.force-legacy=false \
-device virtio-serial-device,bus=virtio-mmio-bus.0 \
-chardev socket,telnet=on,host=127.0.0.1,port=3450,server=on,wait=off,id=foo \
-device virtconsole,chardev=foo \
-device virtio-rng-device,bus=virtio-mmio-bus.1 \
-netdev user,id=u1,hostfwd=tcp:127.0.0.1:10023-10.0.2.15:23,hostfwd=tcp:127.0.0.1:15001-10.0.2.15:5001 \
-device virtio-net-device,netdev=u1,bus=virtio-mmio-bus.2 \
-drive file=./mydisk-1gb.img,if=none,format=raw,id=hd \
-device virtio-blk-device,bus=virtio-mmio-bus.3,drive=hd \
-bios none -kernel ./nuttx/nuttx -nographic
netnsh64_smp
Similar to the netnsh64 configuration, but with SMP support for 64-bit RISC-V.
To run it with QEMU, use the following command:
$ dd if=/dev/zero of=./mydisk-1gb.img bs=1M count=1024
$ qemu-system-riscv64 -semihosting -M virt,aclint=on -cpu rv64 -smp 8 \
-global virtio-mmio.force-legacy=false \
-device virtio-serial-device,bus=virtio-mmio-bus.0 \
-chardev socket,telnet=on,host=127.0.0.1,port=3450,server=on,wait=off,id=foo \
-device virtconsole,chardev=foo \
-device virtio-rng-device,bus=virtio-mmio-bus.1 \
-netdev user,id=u1,hostfwd=tcp:127.0.0.1:10023-10.0.2.15:23,hostfwd=tcp:127.0.0.1:15001-10.0.2.15:5001 \
-device virtio-net-device,netdev=u1,bus=virtio-mmio-bus.2 \
-drive file=./mydisk-1gb.img,if=none,format=raw,id=hd \
-device virtio-blk-device,bus=virtio-mmio-bus.3,drive=hd \
-bios none -kernel ./nuttx/nuttx -nographic
netnsh_smp
Similar to the netnsh configuration, but with SMP support for 32-bit RISC-V.
To run it with QEMU, use the following command:
$ dd if=/dev/zero of=./mydisk-1gb.img bs=1M count=1024
$ qemu-system-riscv32 -semihosting -M virt,aclint=on -cpu rv32 -smp 8 \
-global virtio-mmio.force-legacy=false \
-device virtio-serial-device,bus=virtio-mmio-bus.0 \
-chardev socket,telnet=on,host=127.0.0.1,port=3450,server=on,wait=off,id=foo \
-device virtconsole,chardev=foo \
-device virtio-rng-device,bus=virtio-mmio-bus.1 \
-netdev user,id=u1,hostfwd=tcp:127.0.0.1:10023-10.0.2.15:23,hostfwd=tcp:127.0.0.1:15001-10.0.2.15:5001 \
-device virtio-net-device,netdev=u1,bus=virtio-mmio-bus.2 \
-drive file=./mydisk-1gb.img,if=none,format=raw,id=hd \
-device virtio-blk-device,bus=virtio-mmio-bus.3,drive=hd \
-bios none -kernel ./nuttx/nuttx -nographic
nsh
Configures the NuttShell (nsh) located at examples/nsh. This NSH configuration is focused on low-level, command-line driver testing. This configuration is used for 32-bit RISC-V
nsh64
Identical to the nsh configuration, but for 64-bit RISC-V.
smp
Similar to the nsh configuration, but with SMP support. This configuration is used for 32-bit RISC-V
smp64
Similar to the nsh configuration, but with SMP support This configuration is used for 64-bit RISC-V
flats
Similar to the nsh configuration, but running in S-mode. This configuration is used for 32-bit RISC-V
flats64
Similar to the nsh configuration, but running in S-mode. This configuration is used for 64-bit RISC-V
RISC-V GDB Debugging
First of all, make sure to select CONFIG_DEBUG_SYMBOLS=y
in menuconfig.
After building the kernel (and the applications, in kernel mode), use the toolchain’s GDB to debug RISC-V applications. For instance, if you are using the xPack’s prebuilt toolchain, you can use the following command to start GDB:
$ riscv-none-elf-gdb-py3 -ix tools/gdb/__init__.py --tui nuttx
To use QEMU for debugging, one should add the parameters -s -S
to the QEMU command line.
For instance:
$ qemu-system-riscv32 -semihosting -M virt,aclint=on -cpu rv32 -smp 8 -bios none -kernel nuttx -nographic -s -S
Then, in GDB, use the following command to connect to QEMU:
$ target extended-remote localhost:1234
Debugging Applications in Kernel Mode
In kernel mode, only the kernel symbols are loaded by default.
If needed, one should also load the application symbols using the following command:
$ add-symbol-file <file> <address>
address
refers to the .text
section of the application and can be retrieved from the ELF file using the following command:
$ riscv-none-elf-readelf -WS <file> | grep .text
For instance, to check the .text
section address of the hello
application, use the following command:
$ riscv-none-elf-readelf -WS ../apps/bin/hello | grep .text
[ 1] .text PROGBITS c0000000 001000 0009e0 00 AX 0 0 2
Note
Pay attention that riscv-none-elf-readelf
refers to your toolchain’s readelf utility. Adjust accordingly if you are
using a different toolchain.
Then, look for the .text
section address and use the c0000000
as the address to load the symbols.
For instance, if you want to load the hello
application, you can use the following command in GDB:
$ add-symbol-file ../apps/bin/hello 0xc0000000
Then, you can set breakpoints, step through the code, and inspect the memory and registers of the applications too.